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This contribution focuses on special aspects regarding numerical integration routines for nonorthogonal PEEC cells. By using
averaged orthogonal subelements in the numerical integration routine, the slow convergence caused by the singularities is avoided
and consequently, a fast evaluation of the self terms is enabled. The approach is verified by a spiral planar coil with a wire of
circular cross section. Here, the current density is computed by the proposed algorithm and compared with FEM results showing a
good agreement.
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I. INTRODUCTION

FOR developing efficient power electronic systems, the

use of computational simulation tools is getting more

and more important since higher efficiencies, less construction

space and reduced hardware costs are demanded. This is

especially true for conductors and coils needed in inductive

components such as transformers or chokes. A well-known

approach to predict effects e. g. the skin- or proximity effects

in such coils or conductors is the partial element equivalent

circuit (PEEC) method. In this terminology, the discretized ge-

ometric coupling elements can be interpreted as partial network

elements and the electromagnetic system can be solved via any

SPICE compatible solver.

II. PARTIAL NETWORK ELEMENTS OF NONORTHOGONAL

MQS-PEEC FORMULATION

The partial resistances Rmm and inductances Lmn depend

on the chosen basis and testing functions. In the orthogonal

brick-shaped case where in each cell a constant current density

is assumed formulations for the partial elements are given in

e. g. [1], [2]. In contrast in the nonorthogonal case, a local

coordinate system (a, b, c) in each current cell is defined [3]

and its metric coefficients hi and unit vectors ~ei with i = a, b, c

have to be considered in the basis and testing functions. The

resulting partial inductance is given in e. g. [4] and is repeated

here as
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For practical applications, the six-fold integrals in (1) have

to be evaluated according to the specific geometry. For the

orthogonal formulation, exact analytical solutions exist for

special arrangements. For all other cases various approximation

techniques can be applied, e. g. the solution with a filamentary

approach given in [5] and introduced as Lfilament. A more
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Fig. 1. Mixed self inductance calculation with approximated self terms and
the filament approach for an integration order of two using (2)

accurate alternative is to evaluate the integrals with a numerical

integration technique, which is especially important for the

nonorthogonal case.

It should also be noted that the number of partial inductances

Lmn grows with the square of the number of cells because all

cells couple with each other.

III. SPECIALIZED NUMERICAL INTEGRATION ALGORITHM

FOR NONORTHOGONAL PARTIAL INDUCTANCES

Because the number of computations of (1) exhibit quadratic

growth, these calculations are often the bottleneck of the

overall computation time and it is worth of considering the

six-fold numerical integration routine in detail. At first, it is

convenient to reduce the six-fold integral of (1) to a four-

fold integral [6] identifying the kernel as being the solution

of arbitrarily oriented current filaments for which analytical

solutions exist given as Lfilament.

By doing so, special attention has to be paid to the sin-

gularities of the kernel at ~r = ~r ′ in (1). Every time, when

b = b′ and c = c′ in the nonorthogonal coordinate system, the

analytical solution of the kernel Lfilament becomes singular. In

order to avoid this situation, the filamentary approach Lfilament is



substituted by the analytical solution of the self inductance of a

orthogonal current cell Lself,exct given in [1] with an averaged

thickness and width of this singularity determined under the

assumption that the volume of the nonorthogonal subparts and

the volume of averaged orthogonal cells is equal. Applying the

proposed approaches (1) becomes
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The illustration of this mixed form of computed coupled

filaments with a replacement of the singularities is shown

in Fig. 1. For visualization aspects, the integration order for

the self inductance has been chosen to be two. The mutual

couplings are computed with the dashed filaments whereas the

self terms of the sub-elements are computed via the analytical

solution of the grey highlighted orthogonal bricks.

Although this approach can lead to overlapping volumes, the

advantage of the proposed algorithm is the fact that more accu-

rate results are obtained in the sense that the integration order

and thus numerical costs needed for a specific accuracy can be

reduced compared to a basic approach, where the singularities

are simply substituted by zero. It is also worth mentioning, that

this approach is not only valid for inductive cells but also for

nonorthogonal capacitive cells in a straightforward manner.

IV. NUMERICAL EXAMPLE OF A SPIRAL PLANAR COIL

For verifying the introduced aspects of the nonorthogonal

PEEC method and the fast integration technique, a spiral planar

coil with three turns having a wire of circular cross section

is analyzed. The geometry of the setup can be inspected in

Fig. 2(a). Here, the inner radius is 20mm, the wire radius

0.5mm and the spacing between the turns 1mm. The orig-

inal circluar outer contour of the coil is approximated by a

polygon with 12 edges and 4680 long and thin nonorthogonal

PEEC cells. For this geometrical setup using a frequency of

100 kHz typically effects like skin- and proximity effects are

expected and can be verified. Because there exists no known

analytical expressions of the calculated current distribution

and impedance of the coil for arbitrary parameter settings, a

qualitative comparison of the current distribution is focused

on. As a reference solution, a finite element method (FEM)

simulation is run with a commercial 3D full-wave solver.

Via postprocessing, the absolute value of the current density

is computed and shown in a cross section of the coil in

Fig. 2(c). For comparison aspects, the same is done with the

nonorthogonal PEEC approach in Fig. 2(b). It can be seen

from the figures that both results agree very well in terms

of the form of the current distribution resulting from skin-

and proximity effects. The total computation time using the

proposed nonorthogonal PEEC approach for the given example

is 185 s on a 2.7GHz processor and 120GB of RAM. The

FEM results in Fig. 2(c) are calculated with 4 264 113 first

order cells with a total computation time of 1612 s on the same

hardware setup resulting in a speedup of the PEEC approach

of approximately 10. The multitude of the FEM cells is needed
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Fig. 2. Calculated current distribution of the 3D example coil

to correctly capture the influence of the eddy current effects

inside the conductors.

V. CONCLUSION

Throughout this paper, a fast numerical integration technique

for the nonorthogonal PEEC formulation is proposed and eval-

uated with a practical application of a circular cross sectioned

conductor, which is discretized using nonorthogonal current

cells. In the final distribution more details about the proposed

algorithm will be given, a multifunction PEEC approach will

be proposed and a academic example of a 2D conductor with

a circular cross section will be evaluated.
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